Login / Signup

Beneficial Bacteria Identified for the Control of Botrytis cinerea in Petunia Greenhouse Production.

Kaylee A SouthFrancesca Peduto HandMichelle L Jones
Published in: Plant disease (2020)
Botrytis cinerea infects most major greenhouse crops worldwide. With its increasing resistance to conventional fungicides and the movement of the greenhouse industry toward more sustainable production practices, alternative methods of control are needed. The objective of this study was to evaluate a collection of 60 bacterial strains through both a dual-culture assay and greenhouse trials to identify strains with biocontrol activity against B. cinerea. For the dual-culture assay, each bacterial strain was streaked on potato dextrose agar medium with B. cinerea. The B. cinerea growth reduction and the zone of inhibition were measured. Thirty-five strains reduced the growth of B. cinerea. All strains were also tested in an initial greenhouse trial in which Petunia × hybrida 'Carpet Red Bright' was sprayed and drenched with the bacteria biweekly for 6 weeks. All open flowers were tagged, and plants were inoculated with B. cinerea (1 × 104 conidia per 1 ml). Disease severity indices calculated from the daily flower gray mold severity ratings of all tagged flowers were used to identify the seven top-performing strains. These seven strains were then evaluated in a greenhouse validation trial. The methods were similar to those of the initial greenhouse trials except that replicate numbers were increased. Three strains (Pseudomonas protegens AP54, Pseudomonas chlororaphis 14B11, and Pseudomonas fluorescens 89F1) were selected for the ability to reduce B. cinerea infection in a greenhouse production setting. These strains can be used in future studies to develop additional biocontrol products for the management of B. cinerea in floriculture crops.
Keyphrases