Login / Signup

Derivation and validation of a clinical prediction model for risk-stratification of children hospitalized with severe pneumonia in Bangladesh.

Gazi Md Salahuddin MamunMichael ZouMd Iqbal HossainBen J BrintzAbu Sayem Mirza Mohammad Hasibur RahmanIrin ParvinMst Mahmuda AckhterMohammod Jobayer ChistiDaniel T LeungLubaba Shahrin
Published in: PLOS global public health (2023)
Children with severe pneumonia in low- and middle-income countries (LMICs) suffer from high rates of treatment failure despite appropriate World Health Organization (WHO)-directed antibiotic treatment. Developing a clinical prediction rule for treatment failure may allow early identification of high-risk patients and timely intervention to decrease mortality. We used data from two separate studies conducted at the Dhaka Hospital of the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b) to derive and externally validate a clinical prediction rule for treatment failure of children hospitalized with severe pneumonia. The derivation dataset was from a randomized clinical trial conducted from 2018 to 2019, studying children aged 2 to 59 months hospitalized with severe pneumonia as defined by WHO. Treatment failure was defined by the persistence of danger signs at the end of 48 hours of antibiotic treatment or the appearance of any new danger signs within 24 hours of enrollment. We built a random forest model to identify the top predictors. The top six predictors were the presence of grunting, room air saturation, temperature, the presence of lower chest wall indrawing, the presence of respiratory distress, and central cyanosis. Using these six predictors, we created a parsimonious model with a discriminatory performance of 0.691, as measured by area under the receiving operating curve (AUC). We performed external validation using a temporally distinct dataset from a cohort study of 191 similarly aged children with severe acute malnutrition and pneumonia. In external validation, discriminatory performance was maintained with an improved AUC of 0.718. In conclusion, we developed and externally validated a parsimonious six-predictor model using random forest methods to predict treatment failure in young children with severe pneumonia in Bangladesh. These findings can be used to further develop and validate parsimonious and pragmatic prognostic clinical prediction rules for pediatric pneumonia, particularly in LMICs.
Keyphrases