A multichannel optical computing architecture for advanced machine vision.
Zhihao XuXiaoyun YuanTiankuang ZhouLu FangPublished in: Light, science & applications (2022)
Endowed with the superior computing speed and energy efficiency, optical neural networks (ONNs) have attracted ever-growing attention in recent years. Existing optical computing architectures are mainly single-channel due to the lack of advanced optical connection and interaction operators, solving simple tasks such as hand-written digit classification, saliency detection, etc. The limited computing capacity and scalability of single-channel ONNs restrict the optical implementation of advanced machine vision. Herein, we develop Monet: a multichannel optical neural network architecture for a universal multiple-input multiple-channel optical computing based on a novel projection-interference-prediction framework where the inter- and intra- channel connections are mapped to optical interference and diffraction. In our Monet, optical interference patterns are generated by projecting and interfering the multichannel inputs in a shared domain. These patterns encoding the correspondences together with feature embeddings are iteratively produced through the projection-interference process to predict the final output optically. For the first time, Monet validates that multichannel processing properties can be optically implemented with high-efficiency, enabling real-world intelligent multichannel-processing tasks solved via optical computing, including 3D/motion detections. Extensive experiments on different scenarios demonstrate the effectiveness of Monet in handling advanced machine vision tasks with comparative accuracy as the electronic counterparts yet achieving a ten-fold improvement in computing efficiency. For intelligent computing, the trends of dealing with real-world advanced tasks are irreversible. Breaking the capacity and scalability limitations of single-channel ONN and further exploring the multichannel processing potential of wave optics, we anticipate that the proposed technique will accelerate the development of more powerful optical AI as critical support for modern advanced machine vision.
Keyphrases
- high resolution
- high speed
- neural network
- deep learning
- systematic review
- randomized controlled trial
- healthcare
- primary care
- magnetic resonance imaging
- artificial intelligence
- high efficiency
- computed tomography
- sensitive detection
- contrast enhanced
- loop mediated isothermal amplification
- cone beam
- human health
- quantum dots