Login / Signup

Identification and Characterization of Rhipicephalus microplus ATAQ Homolog from Haemaphysalis longicornis Ticks and Its Immunogenic Potential as an Anti-Tick Vaccine Candidate Molecule.

Paul Franck Adjou MoumouniSouichirou NaomasaBumduuren TuvshintulgaNariko SatoKiyoshi OkadoWeiqing ZhengSeung-Hun LeeJuan Joel Mosqueda GualitoHiroshi SuzukiXuenan XuanRika Umemiya-Shirafuji
Published in: Microorganisms (2023)
Although vaccines are one of the environmentally friendly means to prevent the spread of ticks, there is currently no commercial vaccine effective against Haemaphysalis longicornis ticks. In this study, we identified, characterized, localized, and evaluated the expression patterns, and tested the immunogenic potential of a homologue of Rhipicephalus microplus ATAQ in H. longicornis (HlATAQ). HlATAQ was identified as a 654 amino acid-long protein present throughout the midgut and in Malpighian tubule cells and containing six full and one partial EGF-like domains. HlATAQ was genetically distant (homology < 50%) from previously reported ATAQ proteins and was expressed throughout tick life stages. Its expression steadily increased ( p < 0.001) during feeding, reached a peak, and then decreased slightly with engorgement. Silencing of HlATAQ did not result in a phenotype that was significantly different from the control ticks. However, H. longicornis female ticks fed on a rabbit immunized with recombinant HlATAQ showed significantly longer blood-feeding periods, higher body weight at engorgement, higher egg mass, and longer pre-oviposition and egg hatching periods than control ticks. These findings indicate that the ATAQ protein plays a role in the blood-feeding-related physiological processes in the midgut and Malpighian tubules and antibodies directed against it may affect these tissues and disrupt tick engorgement and oviposition.
Keyphrases