Synthesis, molecular docking analysis, molecular dynamic simulation, ADMET, DFT, and drug likeness studies: Novel Indeno[1,2-b]pyrrol-4(1H)-one as SARS-CoV-2 main protease inhibitors.
Davood GheidariMorteza MehrdadMohammad BayatPublished in: PloS one (2024)
The pharmacological effects of pyrroles and their derivatives have a wide range of applications. In our study, we focused on synthesizing nine novel derivatives of 2-arylamino-dihydro-indeno[1,2-b] pyrrol-4(1H)-one, with a particular emphasis on their antiviral properties. Using in silico studies involving molecular docking and DFT analyses in the gas phase using the B3LYP/6-31++G(d,p) basis set, we studied these compounds with respect to their interactions with the Mpro of SARS-CoV-2. The results of the docking analysis revealed that the synthesized compounds exhibited favorable inhibitory effects. Notably, compound 5f demonstrated the highest effectiveness against the target protein. Furthermore, the pharmacokinetic and drug-like properties of the synthesized derivatives of 2-arylamino-dihydroindeno[1,2-b] pyrrol-4(1H)-one indicated their potential as promising candidates for further development as inhibitors targeting SARS-CoV-2. However, it is imperative to determine the in vitro efficacy of these compounds through comprehensive biochemical and structural analyses.
Keyphrases
- molecular docking
- sars cov
- molecular dynamics simulations
- respiratory syndrome coronavirus
- randomized controlled trial
- systematic review
- cancer therapy
- protein protein
- single cell
- molecular dynamics
- drug delivery
- risk assessment
- adverse drug
- case control
- binding protein
- electronic health record
- amino acid
- virtual reality