Login / Signup

SOCA-PRNet: Spatially Oriented Attention-Infused Structured-Feature-Enabled PoseResNet for 2D Human Pose Estimation.

Zakir AliSartaj Ahmed SalmanHiroki Takahashi
Published in: Sensors (Basel, Switzerland) (2023)
In the recent era, 2D human pose estimation (HPE) has become an integral part of advanced computer vision (CV) applications, particularly in understanding human behaviors. Despite challenges such as occlusion, unfavorable lighting, and motion blur, advancements in deep learning have significantly enhanced the performance of 2D HPE by enabling automatic feature learning from data and improving model generalization. Given the crucial role of 2D HPE in accurately identifying and classifying human body joints, optimization is imperative. In response, we introduce the Spatially Oriented Attention-Infused Structured-Feature-enabled PoseResNet (SOCA-PRNet) for enhanced 2D HPE. This model incorporates a novel element, Spatially Oriented Attention (SOCA), designed to enhance accuracy without significantly increasing the parameter count. Leveraging the strength of ResNet34 and integrating Global Context Blocks (GCBs), SOCA-PRNet precisely captures detailed human poses. Empirical evaluations demonstrate that our model outperforms existing state-of-the-art approaches, achieving a Percentage of Correct Keypoints at 0.5 (PCKh@0.5) of 90.877 at a 50% threshold and a Mean Precision (Mean@0.1) score of 41.137. These results underscore the potential of SOCA-PRNet in real-world applications such as robotics, gaming, and human-computer interaction, where precise and efficient 2D HPE is paramount.
Keyphrases
  • endothelial cells
  • deep learning
  • machine learning
  • induced pluripotent stem cells
  • pluripotent stem cells
  • working memory
  • electronic health record
  • convolutional neural network