A lipid membrane supported on an artificial extracellular matrix made of polyelectrolyte multilayers: towards nanoarchitectonics at the cellular interface.
Anna VikulinaAlena WulfGuy GudayRawil F FakhrullinDmitry V VolodkinPublished in: Nanoscale (2023)
To implement a specific function, cells recognize multiple physical and chemical cues and exhibit molecular responses at their interfaces - the boundary regions between the cell lipid-based membrane and the surrounding extracellular matrix (ECM). Mimicking the cellular external microenvironment presents a big challenge in nanoarchitectonics due to the complexity of the ECM and lipid membrane fragility. This study reports an approach for the assembly of a lipid bilayer, mimicking the cellular membrane, placed on top of a polyelectrolyte multilayer cushion made of hyaluronic acid and poly-L-lysine - a nanostructured biomaterial, which represents a 3D artificial ECM. Model proteins, lysozyme and α-lactalbumin, (which have similar molecular masses but carry opposite net charges) have been employed as soluble signalling molecules to probe their interaction with these hybrids. The formation of a lipid bilayer and the intermolecular interactions in the hybrid structure are monitored using a quartz crystal microbalance and confocal fluorescence microscopy. Electrostatic interactions between poly-L-lysine and the externally added proteins govern the transport of proteins into the hybrid. Designed ECM-cell mimicking hybrids open up new avenues for modelling a broad range of cell membranes and ECM and their associated phenomena, which can be used as a tool for synthetic biology and drug screening.
Keyphrases
- extracellular matrix
- single cell
- hyaluronic acid
- fatty acid
- single molecule
- cell therapy
- optical coherence tomography
- stem cells
- induced apoptosis
- physical activity
- mental health
- emergency department
- oxidative stress
- high throughput
- molecular dynamics simulations
- amino acid
- magnetic resonance
- quantum dots
- machine learning
- cell cycle arrest
- bone marrow
- artificial intelligence
- living cells
- label free