Increased vascular smooth muscle cell senescence in aneurysmal Fibulin-4 mutant mice.
Sanne J M StefensNicole van VlietArne IJpmaJoyce BurgerYunlei LiPaula M van HeijningenJan H N LindemanDanielle Majoor-KrakauerHence J M VerhagenRoland KanaarJeroen EssersIngrid van der PluijmPublished in: npj aging (2024)
Aortic aneurysms are dilatations of the aorta that can rupture when left untreated. We used the aneurysmal Fibulin-4 R/R mouse model to further unravel the underlying mechanisms of aneurysm formation. RNA sequencing of 3-month-old Fibulin-4 R/R aortas revealed significant upregulation of senescence-associated secretory phenotype (SASP) factors and key senescence factors, indicating the involvement of senescence. Analysis of aorta histology and of vascular smooth muscle cells (VSMCs) in vitro confirmed the senescent phenotype of Fibulin-4 R/R VSMCs by revealing increased SA-β-gal, p21, and p16 staining, increased IL-6 secretion, increased presence of DNA damage foci and increased nuclei size. Additionally, we found that p21 luminescence was increased in the dilated aorta of Fibulin-4 R/R |p21-luciferase mice. Our studies identify a cellular aging cascade in Fibulin-4 aneurysmal disease, by revealing that Fibulin-4 R/R aortic VSMCs have a pronounced SASP and a senescent phenotype that may underlie aortic wall degeneration. Additionally, we demonstrated the therapeutic effect of JAK/STAT and TGF-β pathway inhibition, as well as senolytic treatment on Fibulin-4 R/R VSMCs in vitro. These findings can contribute to improved therapeutic options for aneurysmal disease aimed at reducing senescent cells.
Keyphrases
- vascular smooth muscle cells
- dna damage
- aortic valve
- pulmonary artery
- single cell
- smooth muscle
- endothelial cells
- mouse model
- angiotensin ii
- coronary artery
- aortic dissection
- left ventricular
- oxidative stress
- type diabetes
- stress induced
- stem cells
- induced apoptosis
- heart failure
- poor prognosis
- cell proliferation
- quantum dots
- skeletal muscle
- bone marrow
- long non coding rna
- cell death
- atrial fibrillation
- wild type
- smoking cessation