Login / Signup

Structural Insights into the Inhibition of the Extended-Spectrum β-Lactamase PER-2 by Avibactam.

Melina RuggieroKrisztina M Papp-WallaceFlorencia BrunettiMelissa D BarnesRobert A BonomoGabriel GutkindSebastián KlinkePablo Power
Published in: Antimicrobial agents and chemotherapy (2019)
The diazabicyclooctane (DBO) avibactam (AVI) reversibly inactivates most serine-β-lactamases. Previous investigations showed that inhibition constants of AVI toward class A PER-2 are reminiscent of values observed for class C and D β-lactamases (i.e., k 2/K of ≈103 M-1 s-1) but lower than other class A β-lactamases (i.e., k 2/K = 104 to 105 M-1 s-1). Herein, biochemical and structural studies were conducted with PER-2 and AVI to explore these differences. Furthermore, biochemical studies on Arg220 and Thr237 variants with AVI were conducted to gain deeper insight into the mechanism of PER-2 inactivation. The main biochemical and structural observations revealed the following: (i) both amino-acid substitutions in Arg220 and the rich hydrophobic content in the active site hinder the binding of catalytic waters and acylation, impairing AVI inhibition; (ii) movement of Ser130 upon binding of AVI favors the formation of a hydrogen bond with the sulfate group of AVI; and (iii) the Thr237Ala substitution alters the AVI inhibition constants. The acylation constant (k 2/K) of PER-2 by AVI is primarily influenced by stabilizing hydrogen bonds involving AVI and important residues such as Thr237 and Arg220. (Variants in Arg220 demonstrate a dramatic reduction in k 2/K) We also observed that displacement of Ser130 side chain impairs AVI acylation, an observation not made in other extended-spectrum β-lactamases (ESBLs). Comparatively, relebactam combined with a β-lactam is more potent against Escherichia coli producing PER-2 variants than β-lactam-AVI combinations. Our findings provide a rationale for evaluating the utility of the currently available DBO inhibitors against unique ESBLs like PER-2 and anticipate the effectiveness of these inhibitors toward variants that may eventually be selected upon AVI usage.
Keyphrases
  • escherichia coli
  • copy number
  • randomized controlled trial
  • systematic review
  • clinical trial
  • klebsiella pneumoniae
  • gene expression
  • dna methylation
  • pseudomonas aeruginosa