PHYTOCHROME INTERACTING FACTORs in the moss Physcomitrella patens regulate light-controlled gene expression.
Tengfei XuJinhong YuanAndreas HiltbrunnerPublished in: Physiologia plantarum (2020)
Phytochromes are red and far-red light receptors in plants that control growth and development in response to changes in the environment. Light-activated phytochromes enter the nucleus and act on a set of downstream signalling components to regulate gene expression. PHYTOCHROME INTERACTING FACTORs (PIFs) belong to the basic helix-loop-helix family of transcription factors and directly bind to light-activated phytochromes. Potential homologues of PIFs have been identified in ferns, bryophytes and streptophyte algae, and it has been shown that the potential PIF homologues from Physcomitrella patens, PIF1 to PIF4, have PIF function when expressed in Arabidopsis. However, their function in Physcomitrella is still unknown. Seed plant PIFs bind to G-box-containing promoters and, therefore, we searched the Physcomitrella genome for genes that contain G-boxes in their promoter. Here, we show that Physcomitrella PIFs activate these promoters in a G-box-dependent manner, suggesting that they could be direct PIF targets. Furthermore, we generated Physcomitrella pif1, pif2, pif3 and pif4 knock out mutant lines and quantified the expression of potential PIF direct target genes. The expression of these genes was generally reduced in pif mutants compared to the wildtype, but for several genes, the relative induction upon a short light treatment was higher in pif mutants than the wildtype. In contrast, expression of these genes was strongly repressed in continuous light, and pif mutants showed partial downregulation of these genes in the dark. Thus, the overall function of PIFs in light-regulated gene expression might be an ancient property of PIFs.