Lipidomic-Based Algorithms Can Enhance Prediction of Obstructive Coronary Artery Disease.
Thomai MouskeftaraOlga DedaTheodoros LiapikosEleftherios PanterisEfstratios KaragiannidisAndreas S PapazoglouHelen G GikaPublished in: Journal of proteome research (2024)
Lipidomics emerges as a promising research field with the potential to help in personalized risk stratification and improve our understanding on the functional role of individual lipid species in the metabolic perturbations occurring in coronary artery disease (CAD). This study aimed to utilize a machine learning approach to provide a lipid panel able to identify patients with obstructive CAD. In this posthoc analysis of the prospective CorLipid trial, we investigated the lipid profiles of 146 patients with suspected CAD, divided into two categories based on the existence of obstructive CAD. In total, 517 lipid species were identified, from which 288 lipid species were finally quantified, including glycerophospholipids, glycerolipids, and sphingolipids. Univariate and multivariate statistical analyses have shown significant discrimination between the serum lipidomes of patients with obstructive CAD. Finally, the XGBoost algorithm identified a panel of 17 serum biomarkers (5 sphingolipids, 7 glycerophospholipids, a triacylglycerol, galectin-3, glucose, LDL, and LDH) as totally sensitive (100% sensitivity, 62.1% specificity, 100% negative predictive value) for the prediction of obstructive CAD. Our findings shed light on dysregulated lipid metabolism's role in CAD, validating existing evidence and suggesting promise for novel therapies and improved risk stratification.
Keyphrases
- coronary artery disease
- machine learning
- cardiovascular events
- percutaneous coronary intervention
- coronary artery bypass grafting
- fatty acid
- deep learning
- aortic stenosis
- clinical trial
- artificial intelligence
- left ventricular
- blood pressure
- metabolic syndrome
- adipose tissue
- high resolution
- type diabetes
- mass spectrometry
- atrial fibrillation
- phase iii
- blood glucose
- transcatheter aortic valve replacement
- phase ii
- atomic force microscopy
- insulin resistance
- open label