Plant extracellular vesicles (P-EVs) are considered promising functional food ingredients due to their various health benefits. In this study, blueberry extracellular vesicles (B-EVs) were collected and purified by size exclusion chromatography (SEC). The chemical compounds in B-EV extracts were analyzed by LC-MS/MS. In addition, the stability of B-EVs was evaluated during short- and long-term storage, heating, and in vitro digestion. The results showed that the B-EVs had a desirable particle size (88.2 ± 7.7 nm). Protein and total RNA concentrations were 582 ± 11.2 μg/mL and 15.4 μg/mL, respectively. The optimal storage temperatures for B-EVs were 4 °C and -80 °C for short- and long-term storage, respectively. Fluorescent labeling and qRT-PCR tests showed that B-EVs could be specifically internalized by Caco-2 cells, whereas virtually no cytotoxic or growth-inhibitory effects were observed. B-EVs down-regulated the expression levels of IL-1β and IL-8 and up-regulated the expression levels of NF-κβ and TLR5 in Caco-2 cells. Overall, the results proved that the intact structure of B-EVs could be preserved during food storage and processing conditions. B-EVs had the ability to reach the human intestine through oral delivery. Moreover, they could be absorbed by intestinal cells and affect human intestinal function.
Keyphrases
- induced apoptosis
- cell cycle arrest
- endothelial cells
- healthcare
- oxidative stress
- public health
- endoplasmic reticulum stress
- inflammatory response
- cell death
- pi k akt
- mental health
- photodynamic therapy
- immune response
- health information
- cell proliferation
- small molecule
- toll like receptor
- human health
- quantum dots
- ms ms
- long non coding rna
- nuclear factor
- tandem mass spectrometry
- lps induced