Characterization of Antimicrobial Activities of Bifidobacterium lactis BB-12 and Their Inhibitory Effect Against Some Foodborne Pathogens.
Fatemeh RoozbahaniMohammad AhanjanMona MoshiriSaeid AbediankenariHamid Reza GoliMaedeh KakavanMehrdad GholamiPublished in: Foodborne pathogens and disease (2024)
Bifidobacterium animalis subsp . lactis BB-12, a probiotic, has shown potential to promote health benefits and control pathogens. This study aimed to investigate the effectiveness of BB-12 and its cell-free supernatant (CFS) in inhibiting the growth of Listeria monocytogenes and Salmonella enterica serovar Typhimurium. To assess the antimicrobial activity of BB-12, agar well diffusion, disk diffusion, and minimum inhibitory concentration (MIC) tests were conducted. The bicinchoninic acid (BCA) assay was performed to measure the protein concentration in CFS. The study's results indicated that the BB-12 strain inhibited the pathogens' growth. The disk diffusion test using BB-12 showed inhibitory results ranging from 11 to 14 mm for both bacteria. The agar well diffusion test reported the zone of inhibition ranging from 11.6 to 16 mm for both bacteria. The MIC test was conducted as a confirmatory test, which demonstrated the highest inhibitory zone using 2 McFarland (6 × 10 8 CFU/mL) concentrations of probiotics on L. monocytogenes (44.98%) and S. Typhimurium (66.41%). The disk diffusion test revealed that the probiotic CFS had a significant inhibitory impact on S. Typhimurium with a 16.6 mm zone of inhibition. The BCA test findings indicated that the 24- and 48-h CFSs exhibited inhibitory properties against infections. Notably, the 24-h CFS, including a protein level of 78.47 μg/mL, demonstrated a more pronounced inhibitory impact on both pathogens. The findings highlight that utilizing the BB-12 strain and its CFS can serve as a viable approach to battle infections, enhancing food safety and public health.
Keyphrases