Urinary Sodium Excretion and Blood Pressure Relationship across Methods of Evaluating the Completeness of 24-h Urine Collections.
Abu Mohammed NaserFeng J HeMahbubur RahmanK M Venkat NarayanNorman R C CampbellPublished in: Nutrients (2020)
We compared the sodium intake and systolic blood pressure (SBP) relationship from complete 24-h urine samples determined by several methods: self-reported no-missed urine, creatinine index ≥0.7, measured 24-h urine creatinine (mCER) within 25% and 15% of Kawasaki predicted urine creatinine, and sex-specific mCER ranges (mCER 15-25 mg/kg/24-h for men; 10-20 mg/kg/24-h for women). We pooled 10,031 BP and 24-h urine sodium data from 2143 participants. We implemented multilevel linear models to illustrate the shape of the sodium-BP relationship using the restricted cubic spline (RCS) plots, and to assess the difference in mean SBP for a 100 mmol increase in 24-h urine sodium. The RCS plot illustrated an initial steep positive sodium-SBP relationship for all methods, followed by a less steep positive relationship for self-reported no-missed urine, creatinine index ≥0.7, and sex-specific mCER ranges; and a plateaued relationship for the two Kawasaki methods. Each 100 mmol/24-h increase in urinary sodium was associated with 0.64 (95% CI: 0.34, 0.94) mmHg higher SBP for self-reported no-missed urine, 0.68 (95% CI: 0.27, 1.08) mmHg higher SBP for creatinine index ≥0.7, 0.87 (95% CI: 0.07, 1.67) mmHg higher SBP for mCER within 25% Kawasaki predicted urine creatinine, 0.98 (95% CI: -0.07, 2.02) mmHg change in SBP for mCER within 15% Kawasaki predicted urine creatinine, and 1.96 (95% CI: 0.93, 2.99) mmHg higher SBP for sex-specific mCER ranges. Studies examining 24-h urine sodium in relation to health outcomes will have different results based on how urine collections are deemed as complete.