Login / Signup

Atomic Level Interactions and Suprastructural Configuration of Plant Cell Wall Polymers in Dialkylimidazolium Ionic Liquids.

Aparna AnnamrajuKalavathy RajanXiaobing ZuoBrian K LongSai Venkatesh PingaliThomas J ElderNicole Labbé
Published in: Biomacromolecules (2023)
Ionic liquids (ILs) have been widely investigated for the pretreatment and deconstruction of lignocellulosic feedstocks. However, the modes of interaction between IL-anions and cations, and plant cell wall polymers, namely, cellulose, hemicellulose, and lignin, as well as the resulting ultrastructural changes are still unclear. In this study, we investigated the atomic level and suprastructural interactions of microcrystalline cellulose, birchwood xylan, and organosolv lignin with 1,3-dialkylimidazolium ILs having varying sizes of carboxylate anions. Analysis by 13 C NMR spectroscopy indicated that cellulose and lignin exhibited stronger hydrogen bonding with acetate ions than with formate ions, as evidenced by greater chemical shift changes. Small-angle X-ray scattering analysis showed that while both cellulose and xylan adopted a single-stranded conformation in acetate-ILs, twice as many acetate ions were bound to one anhydroglucose unit than to an anhydroxylose unit. We also determined that a minimum of seven representative carbohydrate units must interact with an anion for that IL to effectively dissolve cellulose or xylan. Lignin is associated as groups of four polymer molecules in formate-ILs and dispersed as single molecules in acetate-ILs, which indicates that it is highly soluble in the latter. In summary, our study demonstrated that 1,3-dialkylimidazolium acetates displayed stronger binding interactions with cellulose and lignin, as compared to formates, and thus have superior potential to fractionate these polymers from lignocellulosic feedstocks.
Keyphrases
  • ionic liquid
  • cell wall
  • room temperature
  • quantum dots
  • high resolution
  • cross sectional
  • binding protein
  • aqueous solution
  • magnetic resonance imaging
  • mass spectrometry