Synthesis and Anticancer Evaluation of 1,4-Naphthoquinone Derivatives Containing a Phenylaminosulfanyl Moiety.
Palanisamy RavichandiranSivakumar Allur SubramaniyanSeon-Young KimJong-Soo KimByung-Hyun ParkKwan Seob ShimChong Sam NaPublished in: ChemMedChem (2019)
1,4-Naphthoquinones are exceptional building blocks in organic synthesis and have been used to synthesize several well-known pharmaceutically active agents. Herein we report the synthesis, structural characterization, and biological evaluation of new phenylaminosulfanyl-1,4-naphthoquinone derivatives. We evaluated the cytotoxic activity of the synthesized compounds against three human cancer cell lines: A549, HeLa, and MCF-7. Most of the synthesized compounds displayed potent cytotoxic activity. Specifically, compounds 5 e [3,5-dichloro-N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)benzamide], 5 f [N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)-3,5-dinitrobenzamide], and 5 p [N-(4-((4-((1,4-dioxo-3-(phenylthio)-1,4-dihydronaphthalen-2-yl)amino)phenyl)sulfonyl)phenyl)thiophene-2-carboxamide] showed remarkable cytotoxic activity. The synthesized compounds showed low toxicity in normal human kidney HEK293 cells. The cytotoxic mechanism of compounds 5 e, 5 f, and 5 p was explored in MCF-7 cells. The results confirmed that these three compounds induce apoptosis and arrest the cell cycle at the G1 phase. In addition, compounds 5 e, 5 f, and 5 p were found to induce apoptosis via upregulation of caspase-3 and caspase-7 proteins as well as by upregulation of the gene expression levels of caspases-3 and -7. Our findings demonstrate that compounds 5 e, 5 f, and 5 p could be potent agents against a number of cancer types.