Login / Signup

Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty.

Nate BreznauEike Mark RinkeAlexander WuttkeHung H V NguyenMuna AdemJule AdriaansAlvarez-Benjumea AmaliaHenrik Kenneth AndersenDaniel AuerFlávio AzevedoOke BahnsenDave BalzerGerrit BauerPaul C BauerMarkus BaumannSharon BauteVerena BenoitJulian BernauerCarl BerningAnna BertholdFelix S BethkeThomas BiegertKatharina BlinzlerJohannes N BlumenbergLicia BobzienAndrea BohmanThijs BolAmie BosticZuzanna BrzozowskaKatharina BurgdorfKaspar BurgerKathrin B BuschJuan Carlos-CastilloNathan ChanPablo ChristmannRoxanne ConnellyChristian S CzymaraElena DamianAlejandro EckerAchim EdelmannMaureen A EgerSimon EllerbrockAnna ForkeAndrea ForsterChris GaasendamKonstantin GavrasVernon GayleTheresa GesslerTimo GnambsAmélie GodefroidtMax GrömpingMartin GroßStefan GruberTobias GummerAndreas HadjarJan Paul HeisigSebastian HellmeierStefanie HeyneMagdalena HirschMikael HjermOshrat HochmanAndreas HövermannSophia HungerChristian HunklerNora HuthZsófia S IgnáczLaura JacobsJannes JacobsenBastian JaegerSebastian JungkunzNils JungmannMathias KauffManuel KleinertJulia KlingerJan-Philipp KolbMarta KołczyńskaJohn KukKatharina KunißenDafina Kurti SinatraAlexander LangenkampPhilipp M LerschLea-Maria LöbelPhilipp LutscherMatthias MaderJoan E MadiaNatalia MalancuLuis MaldonadoHelge MarahrensNicole MartinPaul MartinezJochen MayerlOscar J MayorgaPatricia McManusKyle McWagnerCecil MeeusenDaniel MeierrieksJonathan MellonFriedolin MerhoutSamuel MerkDaniel MeyerLeticia MicheliJonathan J B MijsCristóbal MoyaMarcel NeunhoefferDaniel NüstOlav NygårdFabian OchsenfeldGunnar OtteAnna O PechenkinaChristopher ProsserLouis RaesKevin RalstonMiguel R RamosArne RoetsJonathan RogersGuido RopersRobin SamuelGregor SandAriela SchachterMerlin SchaefferDavid SchieferdeckerElmar SchlueterRegine SchmidtKatja M SchmidtAlexander Schmidt-CatranClaudia SchmiedebergJürgen SchneiderMartijn SchoonveldeJulia Schulte-CloosSandy SchumannReinhard SchunckJürgen SchuppJulian SeuringHenning SilberWillem W A SleegersNico SonntagAlexander StaudtNadia SteiberNils SteinerSebastian SternbergDieter StiersDragana StojmenovskaNora StorzErich StriessnigAnne-Kathrin StroppeJanna TeltemannAndrey TibajevBrian TungGiacomo VagniJasper Van AsscheMeta van der LindenJolanda Van der NollArno Van HootegemStefan VogtenhuberBogdan VoicuFieke WagemansNadja WehlHannah WernerBrenton M WiernikFabian WinterChristof WolfYuki YamadaNan ZhangConrad ZillerStefan ZinsTomasz Żółtak
Published in: Proceedings of the National Academy of Sciences of the United States of America (2022)
This study explores how researchers' analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers' expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team's workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers' results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.
Keyphrases
  • data analysis
  • mental health
  • public health
  • healthcare
  • electronic health record
  • palliative care
  • systematic review
  • big data
  • machine learning
  • type diabetes
  • quality improvement
  • artificial intelligence