Molecular identification of an androgen receptor and the influence of long-term aggressive interaction on hypothalamic genes expression in black rockfish (Sebastes schlegelii).
Xiuwen XuXin SunQingqing BaiYuyang ZhangJianguang QinXiumei ZhangPublished in: Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology (2021)
This study aims to explore the mechanism on how aggressive interaction alters reproductive physiology by testing whether aggressive interaction can activate the reproductive neuroendocrine function via the hypothalamus-pituitary-gonadal (HPG) axis in black rockfish (Sebastes schlegelii). The expressions of the androgen receptor gene (ar) and gonadotropin-releasing hormone genes (gnrhs), the concentration of plasma androgens, and GSI (the ratio of testes mass to body mass) were compared between the interaction group (dominant males or subordinate males) and the isolation group in male black rockfish after 3 weeks. A full-length cDNA encoding an androgen receptor (AR) of 766 amino acids was isolated. Transcripts encoding this AR were detected at a high relative abundance in the liver, kidney, testis, ovary, muscle, and intestine tissue. Further evaluation of brain genes transcripts abundance revealed that the mRNA levels of gnrh I and ar genes were significantly different between the interaction group and the isolation group in the hypothalamus. However, no significant difference was detected in testosterone, 11-keto-testosterone, and GSI between these two groups. This study indicates that a long-term aggressive interaction affect the expression of hypothalamic gnrh I and ar but may not change the physiological function of the HPG axis in an all-male condition.