Previous studies from our group and others have shown that current drug treatment(s) strategies eliminate bulk of tumor cells (non-CSCs) but it had a minimal effect on cancer stem cells (CSCs) leading to resistance and tumor recurrence. We studied the effects of CFM-4.16 (CARP-1 functional mimetic) and/or cisplatin on four Triple-negative breast cancer (TNBC) MDA-MB-468, MDA-MB-231, CRL-2335 and BR-1126, two cisplatin resistant CisR/MDA-231 and CisR/MDA-468 and cancer stem cells (CSCs) from resistant cell lines. TNBC cells treated with CFM-4.16 plus cisplatin inhibited the expression of FZD8, LRP6 and c-Myc and significantly enhanced cell death in all the cell lines by ~70%-80% compared with the control(s). When Cisplatin resistant CisR/MDA-231 and CisR/MDA-468 were treated with CFM-4.16 plus cisplatin, they also showed a reduction in FZD8 and LRP6 and increased apoptosis compared to control group. Similarly, CFM-4.16 plus cisplatin treatment reduced mammospheres formation abilities of CSCs by 80-90% compared to control group, increased PARP cleavage and apoptosis. Data shows CFM-4.16 plus cisplatin treatment significantly increased apoptosis/cell death in parental, cisplatin resistant and CSCs. Taken together the data suggests that FZD8-mediated Wnt-signaling plays a major role in mediating CSCs growth and resistance to chemotherapy and its inhibition enhances the chemotherapeutic response in TNBC.
Keyphrases
- cell cycle arrest
- cancer stem cells
- cell death
- pi k akt
- breast cancer cells
- oxidative stress
- endoplasmic reticulum stress
- emergency department
- induced apoptosis
- poor prognosis
- squamous cell carcinoma
- signaling pathway
- combination therapy
- machine learning
- dna damage
- electronic health record
- transcription factor
- replacement therapy
- long non coding rna
- low density lipoprotein
- binding protein