Login / Signup

Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform.

Dohyeon KwonIgju JeonWon-Kyu LeeMyoung-Sun HeoJungwon Kim
Published in: Science advances (2020)
Frequency-stabilized optical frequency combs have created many high-precision applications. Accurate timing, ultralow phase noise, and narrow linewidth are prerequisites for achieving the ultimate performance of comb-based systems. Ultrastable cavity-based comb-noise stabilization methods have enabled sub-10-15-level frequency instability. However, these methods are complex and alignment sensitive, and their use has been mostly confined to advanced metrology laboratories. Here, we have established a simple, compact, alignment-free, and potentially low-cost all-fiber photonics-based stabilization method for generating multiple ultrastable combs. The achieved performance includes 1-femtosecond timing jitter, few times 10-15-level frequency instability, and <5-hertz linewidth, rivalling those of cavity-stabilized combs. This method features flexibility in configuration: As a representative example, two combs were stabilized with 180-hertz repetition rate difference and ~1-hertz relative linewidth and could be used as an ultrastable, octave-spanning dual-comb spectroscopy source. The demonstrated method constitutes a mechanically robust and reconfigurable tool for generating multiple ultrastable combs suitable for field applications.
Keyphrases
  • low cost
  • high resolution
  • high speed
  • air pollution
  • cross sectional
  • mass spectrometry