Login / Signup

Machine learning model development for quantitative analysis of CT heterogeneity in canine hepatic masses may predict histologic malignancy.

Rami M ShakerChristopher WilkeChristopher OberJessica Lawrence
Published in: Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association (2021)
Tumor heterogeneity is a well-established marker of biologically aggressive neoplastic processes and is associated with local recurrence and distant metastasis. Quantitative analysis of CT textural features is an indirect measure of tumor heterogeneity and therefore may help predict malignant disease. The purpose of this retrospective, secondary analysis study was to quantitatively evaluate CT heterogeneity in dogs with histologically confirmed liver masses to build a predictive model for malignancy. Forty dogs with liver tumors and corresponding histopathologic evaluation from a previous prospective study were included. Triphasic image acquisition was standardized across dogs and whole liver and liver mass were contoured on each precontrast and delayed postcontrast dataset. First-order and second-order indices were extracted from contoured regions. Univariate analysis identified potentially significant indices that were subsequently used for top-down model construction. Multiple quadratic discriminatory models were constructed and tested, including individual models using both postcontrast and precontrast whole liver or liver mass volumes. The best performing model utilized the CT features voxel volume and uniformity from postcontrast mass contours; this model had an accuracy of 0.90, sensitivity of 0.67, specificity of 1.0, positive predictive value of 1.0, negative predictive value of 0.88, and precision of 1.0. Heterogeneity indices extracted from delayed postcontrast CT hepatic mass contours were more informative about tumor type compared to indices from whole liver contours, or from precontrast hepatic mass and whole liver contours. Results demonstrate that CT radiomic feature analysis may hold clinical utility as a noninvasive method of predicting hepatic malignancy and may influence diagnostic or therapeutic approaches.
Keyphrases
  • contrast enhanced
  • computed tomography
  • image quality
  • machine learning
  • dual energy
  • single cell
  • positron emission tomography
  • magnetic resonance imaging
  • deep learning
  • magnetic resonance
  • cross sectional