Login / Signup

E3 ubiquitin ligase FBXW7 enhances radiosensitivity of non-small cell lung cancer cells by inhibiting SOX9 regulation of CDKN1A through ubiquitination.

Hongge ZhuXiuli WangXin ZhouSuqiong LuGuomin GuChunling Liu
Published in: Laboratory investigation; a journal of technical methods and pathology (2022)
Non-small cell lung cancer (NSCLC) has high rates of morbidity and mortality. E3 ubiquitin ligase usually has antitumor effects. This study evaluated the mechanism of E3 ligase FBXW7 (F-box and WD repeat domain containing 7) in the radiosensitivity of NSCLC. NCI-H1299 and NCI-H1299R cells were irradiated by 0, 2, 4, and 6 Gy doses of X-ray, respectively. In addition to the measurement of cell proliferation, apoptosis, and γ-H2AX, FBXW7 expression was measured and the interaction between FBXW7 and SOX9 (SRY-box transcription factor 9) was evaluated. Ubiquitination level and protein stability of SOX9 were examined after FBXW7 overexpression. The binding relationship between SOX9 and CDKN1A (cyclin-dependent kinase inhibitor 1A) was verified. Xenograft tumor model was established to evaluate the effect of FBXW7 on radiosensitivity in vivo. FBXW7 was under-expressed in radioresistant cells. Overexpression of FBXW7 repressed NCI-H1299 and NCI-H1299R cell proliferation and colony formation and increased γ-H2AX-positive foci. Overexpression of FBXW7 increased the ubiquitination level and reduced the protein stability of SOX9. SOX9 bound to the CDKN1A promoter to inhibit CDKN1A expression. FBXW7 inhibited tumorigenesis and apoptosis and enhanced radiosensitivity of NSCLC cells in vivo via the SOX9/CDKN1A axis. Overall, FBXW7 inhibited SOX9 expression by promoting SOX9 ubiquitination and proteasome degradation, suppressing the binding of SOX9 to CDKN1A, and upregulating CDKN1A, thereby improving the radiosensitivity of NSCLC cells.
Keyphrases