Login / Signup

Sex hormone binding globulin (SHBG) modulates mitochondrial dynamics in PPARγ-depleted equine adipose derived stromal cells.

Krzysztof MaryczBenita WiatrakJennifer M Irwin-HoustonKlaudia MarcinkowskaMalwina MularczykLynda Bourebaba
Published in: Journal of molecular medicine (Berlin, Germany) (2024)
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that promotes adipogenesis, lipid uptake and storage, insulin sensitivity, and glucose metabolism. Hence, defects in PPARγ have been associated to the development of metabolic disorders. Sex hormone-binding globulin (SHBG) is a glycoprotein primarily produced in the liver that regulates the bioavailability of sex hormones. Alike PPARγ, low SHBG levels have been correlated with insulin resistance and associated endocrine abnormalities. Therefore, this study aimed to verify whether SHBG may restore depleted PPARγ functions and thus serve as a new candidate for the management of metabolic conditions. A model of equine adipose-derived stromal cells (EqASCs) has been used, in which a PPARγ silencing and SHBG treatment have been achieved to determine the changes in cell viability, premature senescence, oxidative stress, and mitochondrial functions. Obtained data demonstrated that loss in PPARγ triggers cell apoptosis which is not reversed by SHBG application. Moreover, PPARγ knockdown cells exhibited premature senescence, which has been substantially alleviated by SHBG concomitantly to increased BAX/BCL2 ratio, suggesting a possible effect on senescence-induced apoptosis resistance. Interestingly, PPARγ silencing induced a significant alteration in mitochondrial membrane potential as well as the expression of dynamics and metabolism-related markers. SHBG treatment enabled to ameliorate the transmembrane potential, to normalize the expression levels of key dynamics and metabolism mediators, and to restore the protein levels of PINK, which is critically involved in mitochondria recycling machinery. Presented data suggest that SHBG may provide new mechanistic insights into the regulation of PPARγ functions, and thus offers a preliminary picture on a possible SHBG-PPARγ metabolic crosstalk. KEY MESSAGES : PPARγ is a transcription factor that tightly regulates cell metabolism. Low SHBG levels correlate with insulin resistance and associated endocrine abnormalities. PPARγ silencing reduces cell viability, triggers premature senescence and profound mitochondrial failure in equine ASCs. SHBG protein reverses senescent phenotype and apoptosis resistance of PPARγ- ASCs. SHBG improves mitochondrial dynamics and metabolism following PPARγ knockdown. SHBG might serve as a PPARγ potential mimicking agent for the modulation of ASCs metabolic processes.
Keyphrases