Login / Signup

Effect of Methyl Jasmonate Elicitation on Triterpene Production and Evaluation of Cytotoxic Activity of Mycelial Culture Extracts of Ganoderma applanatum (Pers.) Pat.

Katarzyna Sułkowska-ZiajaAgnieszka GalantyAgnieszka SzewczykPaweł PaśkoKatarzyna KałaAnna ApolaIrma PodolakBożena Muszyńska
Published in: Plants (Basel, Switzerland) (2023)
Abiotic elicitation, a well-known strategy in mushroom biotechnology, promotes increased accumulation of secondary metabolites in mycelial cultures. The study aimed the effects of methyl jasmonate (MeJA) on the production of triterpenes in submerged cultures of Ganoderma applanatum . Further, the study evaluated the cytotoxic activity of the extract corresponding to the optimal elicitation variant in selected human cancer cell lines as well as the selectivity against normal cells. MeJA was added on days 1, 4, 6, and 8 in the 10-day growth cycle at concentrations of 10, 50, 100, 150, and 200 µM MeJA. The HPLC-DAD was used to analyze the triterpenes. The cytotoxic activity was tested using the MTTFc assay in grouped panels of skin, prostate, and gastrointestinal cancer cells. The results of the quantitative analyses confirmed the stimulating effect of MeJA on the production of ganoderic acid A and ganoderic acid C. The greatest increase in total triterpenes was found on day 6 of the culture cycle compared to the control group-with the concentration of MeJA-150 µM. Compared to the control samples, mycelial culture extract after the most productive elicitation variant showed significant cytotoxic activity against prostate cancer cells and moderate effects on melanoma cells. Ganoderma applanatum mycelial cultures can be proposed as a model to study the dynamics of the accumulation of compounds with therapeutic values through abiotic elicitation.
Keyphrases
  • ms ms
  • prostate cancer
  • endothelial cells
  • oxidative stress
  • squamous cell carcinoma
  • mass spectrometry
  • induced apoptosis
  • high intensity
  • high throughput
  • signaling pathway
  • squamous cell