Electroporation is a proven technique that can record action potential of cardiomyocytes and serve for biomolecular delivery. To ensure high cell viability, micro-nanodevices cooperating with low-voltage electroporation are frequently utilized in research, and the effectiveness of delivery for intracellular access is typically assessed using an optical imaging approach like flow cytometry. However, the efficiency of in situ biomedical studies is hampered by the intricacy of these analytical approaches. Here, we develop an integrated cardiomyocyte-based biosensing platform to effectively record action potential and evaluate the electroporation quality in terms of viability, delivery efficiency, and mortality. The ITO-MEA device of the platform possesses sensing/stimulating electrodes which combines with the self-developed system to achieve intracellular action potential recording and delivery by electroporation trigger. Moreover, the image acquisition processing system analyzes various parameters effectively to assess delivery performance. Therefore, this platform has the potential for drug delivery therapy and pathology research for cardiology.
Keyphrases
- drug delivery
- flow cytometry
- high throughput
- human health
- systematic review
- randomized controlled trial
- high resolution
- risk assessment
- cardiovascular events
- deep learning
- coronary artery disease
- angiotensin ii
- climate change
- endothelial cells
- quality improvement
- type diabetes
- high glucose
- machine learning
- mass spectrometry