Mutations in the C1 element of the insulin promoter lead to diabetic phenotypes in homozygous mice.
Hirofumi NoguchiChika Miyagi-ShiohiraYoshiki NakashimaTakao KinjoIssei SaitohMasami WatanabePublished in: Communications biology (2020)
Genome editing technologies such as CRISPR-Cas9 are widely used to establish causal associations between mutations and phenotypes. However, CRISPR-Cas9 is rarely used to analyze promoter regions. The insulin promoter region (approximately 1,000 bp) directs β cell-specific expression of insulin, which in vitro studies show is regulated by ubiquitous, as well as pancreatic, β cell-specific transcription factors. However, we are unaware of any confirmatory in vivo studies. Here, we used CRISPR-Cas9 technology to generate mice with mutations in the promoter regions of the insulin I (Ins1) and II (Ins2) genes. We generated 4 homozygous diabetic mice with 2 distinct mutations in the highly conserved C1 elements in each of the Ins1 and Ins2 promoters (3 deletions and 1 replacement in total). Remarkably, all mice with homozygous or heterozygous mutations in other loci were not diabetic. Thus, the C1 element in mice is required for Ins transcription in vivo.