Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle.
Sangwook KimByeonghwi LimJoohyeon ChoSeokhyun LeeChang-Gwon DangJung-Hwan JeonJun-Mo KimJungjae LeePublished in: Animals : an open access journal from MDPI (2021)
We performed a genome-wide association study and fine mapping using two methods (single marker regression: frequentist approach and Bayesian C (BayesC): fitting selected single nucleotide polymorphisms (SNPs) in a Bayesian framework) through three high-density SNP chip platforms to analyze milk production phenotypes in Korean Holstein cattle (n = 2780). We identified four significant SNPs for each phenotype in the single marker regression model: AX-311625843 and AX-115099068 on Bos taurus autosome (BTA) 14 for milk yield (MY) and adjusted 305-d fat yield (FY), respectively, AX-428357234 on BTA 18 for adjusted 305-d protein yield (PY), and AX-185120896 on BTA 5 for somatic cell score (SCS). Using the BayesC model, we discovered significant 1-Mb window regions that harbored over 0.5% of the additive genetic variance effects for four milk production phenotypes. The concordant significant SNPs and 1-Mb window regions were characterized into quantitative trait loci (QTL). Among the QTL regions, we focused on a well-known gene (diacylglycerol O-acyltransferase 1 (DGAT1)) and newly identified genes (phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) for MY and FY, and observed that DGAT1 is involved in glycerolipid metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism, and PDE4B is involved in cAMP signaling. Our findings suggest that the candidate genes in QTL are strongly related to physiological mechanisms related to the fat production and consequent total MY in Korean Holstein cattle.
Keyphrases
- genome wide
- high density
- dna methylation
- copy number
- genome wide identification
- genome wide association study
- adipose tissue
- heat stress
- dairy cows
- fatty acid
- high resolution
- gene expression
- transcription factor
- single cell
- high throughput
- air pollution
- cell therapy
- binding protein
- mesenchymal stem cells
- bone marrow
- genome wide association
- protein protein
- mass spectrometry