Login / Signup

Pathogen inactivation/reduction of platelet concentrates: turning theory into practice.

B S GathofM E TauszigS M Picker
Published in: ISBT science series (2010)
Background  Pathogen reduction technology (PRT) has been proven to reduce the residual risk of transmission of infectious agents. Reduction of various contaminating bacteriae, viruses and parasites by few to several log steps and efficiency to prevent GVHD has been shown. Aim  To evaluate and compare advantages and disadvantages of PRT available for practical application in platelets. Materials and Methods  PRT for the treatment of platelets is currently offered by two formats: Amotosalen (INTERCEPT, Cerus, Concord, CA, USA) and vitamin B2 (Mirasol, Caridian, Denver, USA). Results from different studies and our own experiences with the two techniques are compared and discussed. Results and Discussion  For both technologies, different groups of investigators have shown acceptable in-vitro results with respect to functional and storage data for platelets stored for up to 5 days after production and before transfusion. Initial clinical studies showed no inferiority of the treated platelets in comparison to untreated controls in thrombocytopenic patients. However for both techniques a tendency towards lower CCI has been reported, which may be more pronounced in the platelets treated with the Intercept process. For introduction of PRT many countries require not only CE mark but licensing with the respective authorities since treatment for pathogen reduction is regarded as creating a 'new' blood product. With respect to a platelet loss during pathogen reduction it seems recommendable to increase the lower limit of platelet content of the product to 2.5 × 1011. Particularly for the Intercept system, where a considerable amount of platelets is lost in the purification of the product from Amotosalen, a change in the production process to increase the platelet yield may be necessary. Data from our group show a tendency for improved functional and storage parameters for platelets treated with the Mirasol process. Compared to conventional manufacturing of platelets by apheresis or pooling of buffy coats, pathogen reduction requires additional labour, space, and quality control. Shelf life of platelets is limited in most countries because of the risk of bacterial contamination (in Germany presently to 4 days). A prolongation to 5 or more days after pathogen reduction seems feasible but remains a topic for future studies. Conclusion  Results of in vitro and clinical studies of pathogen reduced platelets are promising. Larger clinical trials will help to determine whether PRT proves to be beneficial (reduction of transmission of infections, less alloimmunisation) and overall cost effective (bearing in mind that additional costs may be compensated for by omission of gamma irradiation and potential longer shelf life).
Keyphrases