Interaction mechanism between luteoloside and corn silk glycans and the synergistic role in hypoglycemic activity.
Shihui QinYanlang LiHuiyan ShaoYang YuYina YangYi ZengJia HuangJiang-Miao HuLiu YangPublished in: Natural products and bioprospecting (2024)
As the two most principal active substances in the corn silk, polysaccharides and flavonoids, the mechanism of interaction between them has been a topic of intense research. This study provides an in-depth investigation of the interaction mechanism between corn silk glycans and luteoloside (LUT) and the synergistic role that result from this interaction. The interaction mechanism was evaluated by isothermal titration calorimetry (ITC) and circular dichroism (CD), and the synergistic role was evaluated by the expression of glucose transporters (GLUT-1), insulin secretion and surface plasmon resonance (SPR). CD and ITC results indicated that the interaction between CSGs and LUT mainly driven by the Cotton effects, enthalpy and entropy-driven. This interaction precipitated the formation of complexes (CSGs/LUT complexes) between corn silk glycans (CSGs) with four different molecular weights and luteoloside (LUT). Furthermore, the CSGs and LUT play a synergistic role in glucose regulation through GLUT-1 expression and insulin secretion experiments, compared to single luteoloside group.