Login / Signup

The importance of multi-modal imaging and clinical information for humans and AI-based algorithms to classify breast masses (INSPiRED 003): an international, multicenter analysis.

André PfobChris Sidey-GibbonsRichard G BarrVolker DudaZaher AlwafaiCorinne BalleyguierDirk-André ClevertSarah FastnerChristina GomezManuela GoncaloInes GruberMarkus HahnAndré HennigsPanagiotis KapetasSheng-Chieh LuJuliane NeesRalf OhlingerFabian RiedelMatthieu RuttenBenedikt SchaefgenMaximilian SchuesslerAnne StieberRiku TogawaMitsuhiro TozakiSebastian WojcinskiCai XuGeraldine RauchJoerg HeilMichael Golatta
Published in: European radiology (2022)
• The performance of humans and AI-based algorithms improves with multi-modal information. • Multimodal AI-based algorithms do not necessarily outperform expert humans. • Unimodal AI-based algorithms do not represent optimal performance to classify breast masses.
Keyphrases
  • machine learning
  • artificial intelligence
  • deep learning
  • health information
  • high resolution
  • contrast enhanced
  • pain management
  • clinical trial
  • cross sectional
  • mass spectrometry
  • social media
  • photodynamic therapy