Rock properties and sediment caliber govern bedrock river morphology across the Taiwan Central Range.
Julia C CarrRoman A DiBiaseEn-Chao YehDonald M FisherEric KirbyPublished in: Science advances (2023)
Feedbacks between surface and deep Earth processes in collisional mountain belts depend on how erosion and topographic relief vary in space and time. One outstanding unknown lies in how rock strength influences bedrock river morphology and thus mountain relief. Here, we quantify boulder cover and channel morphology using uncrewed aerial vehicle surveys along 30 kilometers of bedrock-bound river corridors throughout the Taiwan Central Range where regional gradients in rock properties relate to tectonic history. We find that boulder size systematically increases with increasing metamorphic grade and depth of exhumation. Boulder size correlates with reach-scale channel steepness but does not explain observations of highly variable channel width. Transport thresholds indicate that rivers are adjusted to mobilize boulders and are well in excess of the threshold to transport gravel and cobbles, as previously assumed. The linkage between metamorphic history, boulder size, and channel steepness reveals how rock properties can influence feedbacks between tectonics and topography throughout the life span of a mountain range.