Stereodivergent Protein Engineering of Fatty Acid Photodecarboxylase for Light-Driven Kinetic Resolution of Sec-Alcohol Oxalates.
Kaihao MouYue GuoWeihua XuDanyang LiZhiguo WangQi WuPublished in: Angewandte Chemie (International ed. in English) (2024)
Stereodivergent engineering of one enzyme to create stereocomplementary variants for synthesizing optically pure molecules with tailor-made (R) or (S) configurations on an optional basis is highly desirable and challenging. This study aimed to engineer fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) using the focused rational iterative site-specific mutagenesis (FRISM) strategy to obtain two highly stereocomplementary variants with excellent selectivity (both giving products with up to 99 % e.e.). These variants were used for the CvFAP-catalyzed light-driven kinetic resolution of oxalates or oxamic acids prepared from the corresponding sec-alcohols or amines, providing a new biotransformation process for preparing chiral sec-alcohols and amines. Molecular dynamics simulation, kinetic data and transient spectra revealed the source of selectivity. This study represents the first example of the kinetic resolution of sec-alcohols or amines catalyzed by a pair of stereocomplementary CvFAPs.