Login / Signup

Histone demethylase LSD1 is critical for endochondral ossification during bone fracture healing.

Jun SunHeng FengWenhui XingYujiao HanJinlong SuoAlisha R YallowitzNiandong QianYujiang Geno ShiMatthew B GreenblattWeiguo Zou
Published in: Science advances (2020)
Bone fracture is repaired predominantly through endochondral ossification. However, the regulation of endochondral ossification by key factors during fracture healing remains largely enigmatic. Here, we identify histone modification enzyme LSD1 as a critical factor regulating endochondral ossification during bone regeneration. Loss of LSD1 in Prx1 lineage cells severely impaired bone fracture healing. Mechanistically, LSD1 tightly controls retinoic acid signaling through regulation of Aldh1a2 expression level. The increased retinoic acid signaling in LSD1-deficient mice suppressed SOX9 expression and impeded the cartilaginous callus formation during fracture repair. The discovery that LSD1 can regulate endochondral ossification during fracture healing will benefit the understanding of bone regeneration and have implications for regenerative medicine.
Keyphrases
  • bone regeneration
  • hip fracture
  • poor prognosis
  • bone mineral density
  • dna methylation
  • transcription factor
  • high throughput
  • binding protein
  • gene expression
  • oxidative stress
  • bone loss