Login / Signup

SARS-CoV-2 spike protein detection using slightly tapered no-core fiber-based optical transducer.

Jinsil HanSeul-Lee LeeJihoon KimGiwan SeoYong Wook Lee
Published in: Mikrochimica acta (2022)
The label-free detection of SARS-CoV-2 spike protein is demonstrated by using slightly tapered no-core fiber (ST-NCF) functionalized with ACE2. In the fabricated sensor head, abrupt changes in the mode-field diameter at the interfaces between single-mode fiber and no-core fiber excite multi-guided modes and facilitate multi-mode interference (MMI). Its slightly tapered region causes the MMI to be more sensitive to the refractive index (RI) modulation of the surrounding medium. The transmission minimum of the MMI spectrum was selected as a sensor indicator. The sensor surface was functionalized with ACE2 bioreceptors through the pretreatment process. The ACE2-immobilized ST-NCF sensor head was exposed to the samples of SARS-CoV-2 spike protein with concentrations ranging from 1 to 10 4  ng/mL. With increasing sample concentration, we observed that the indicator dip moved towards a longer wavelength region. The observed spectral shifts are attributed to localized RI modulations at the sensor surface, which are induced by selective bioaffinity binding between ACE2 and SARS-CoV-2 spike protein. Also, we confirmed the capability of the sensor head as an effective and simple optical probe for detecting antigen protein samples by applying saliva solution used as a measurement buffer. Moreover, we compared its detection sensitivity to SARS-CoV-2 and MERS-CoV spike protein to examine its cross-reactivity. In particular, we proved the reproducibility of the bioassay protocol adopted here by employing the ST-NCF sensor head reconstructed with ACE2. Our ST-NCF transducer is expected to be beneficially utilized as a low-cost and portable biosensing platform for the rapid detection of SARS-CoV-2 spike protein.
Keyphrases