Isolation of a new Papiliotrema laurentii strain that displays capacity to achieve high lipid content from xylose.
Nívea Moreira VieiraRaquel Cristina Vieira Dos SantosVanessa Kely de Castro GermanoRafaela Zandonade VentorimEduardo Luís Menezes de AlmeidaFernando Augusto da SilveiraJosé Ivo Ribeiro JúniorWendel Batista da SilveiraPublished in: 3 Biotech (2020)
In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil (Caparaó and Serra dos Órgãos) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as Papiliotrema laurentii (UFV-1 and UFV-2). Of the two, P. laurentii UFV-1 was selected as the best lipid producer. Under unoptimized conditions, lipid production by P. laurentii UFV-1 was higher in glucose than in xylose. To improve its lipid production from xylose, we applied response surface methodology (RSM) with a face-centered central composite design (CCF). We evaluated the effects of agitation rate, initial cell biomass (OD600), carbon/nitrogen ratio (C/N ratio) and pH on lipid production. P. laurentii UFV-1 recorded the highest lipid content, 63.5% (w/w) of the cell dry mass, under the following conditions: C/N ratio = 100:1, pH value = 7.0, initial OD600 = 0.8 and agitation = 300 rpm. Under these optimized conditions, biomass, lipid titer and volumetric lipid productivity were 9.31 g/L, 5.90 g/L and 0.082 g/L.h, respectively. Additionally, we determined the fatty acid composition of P. laurentii UFV-1 as follows: C14:0 (0.5%), C16:0 (28.4-29.4%), C16:1 (0.2%), C18:0 (9.5-11%), C18:1 (58.6-60.5%), and C20:0 (0.7-0.8%). Based on this composition, the predicted properties of biodiesel showed that P. laurentii UFV-1 oil is suitable for use as feedstock in biodiesel production.