Login / Signup

Reactions of proteins with a few organopalladium compounds of medicinal interest.

Lara MassaiThomas ScattolinMatteo TarchiFabiano VisentinLuigi Messori
Published in: RSC advances (2022)
Pd compounds form a promising class of experimental anticancer drug candidates whose mechanism of action is still largely unknown; in particular, a few organopalladium compounds seem very attractive. To gain mechanistic insight into medicinal palladium compounds, we have explored here - through ESI MS analysis - the interactions of four organopalladium agents (1-4) - showing remarkable in vitro antiproliferative properties - with a few representative model proteins, i.e. , lysozyme (HEWL), ribonuclease A (RNase), and carbonic anhydrase (hCAI). The tested panel included three Pd allyl compounds with one or two carbene ligands and a palladacyclopentadienyl complex. Notably, the Pd allyl compounds turned out to manifest, on the whole, a modest tendency to react with the above proteins. Only complex 3 produced small amounts of characteristic adducts with hCAI bearing either one or two Pd allyl groups. In contrast, the palladacyclopentadienyl complex 4 manifested a greater and peculiar reactivity with all the above proteins generating invariably protein adducts with a mass increase of +256 Da where a butadienyl group - with no associated Pd - is attached to the proteins. Afterwards, we extended our investigations to the C-terminal dodecapeptide of thioredoxin reductase bearing the -Cys-Sec- reactive motif. In this latter case adducts were formed with all tested Pd compounds; however, complex 4 manifested towards this dodecapeptide a type of reactivity deeply different from that observed with HEWL, RNase A and hCAI. The mechanistic implications of these findings are discussed.
Keyphrases
  • magnetic resonance
  • mass spectrometry
  • magnetic resonance imaging
  • small molecule
  • cross sectional
  • amino acid
  • electronic health record
  • drug induced