Publication bias and p-hacking are two well-known phenomena that strongly affect the scientific literature and cause severe problems in meta-analyses. Due to these phenomena, the assumptions of meta-analyses are seriously violated and the results of the studies cannot be trusted. While publication bias is very often captured well by the weighting function selection model, p-hacking is much harder to model and no definitive solution has been found yet. In this paper, we advocate the selection model approach to model publication bias and propose a mixture model for p-hacking. We derive some properties for these models, and we compare them formally and through simulations. Finally, two real data examples are used to show how the models work in practice.