Login / Signup

Understanding and Circumventing the Requirement for Native Thioester Substrates for α-Oxoamine Synthase Reactions.

Sarah E AckenhusenYe WangStephanie W ChunAlison R H Narayan
Published in: ACS chemical biology (2022)
Many enzyme classes require thioester electrophiles such as acyl-carrier proteins and acyl-coenzyme A substrates. For in vitro applications, these substrates can render these chemical transformations impractical. To address this challenge, we have investigated the mechanism of coenzyme A in gating catalysis of one α-oxoamine synthase, SxtA AOS. Through investigating the reactivity of SxtA AOS and corresponding enzyme variants against a panel of substrates and coenzyme A mimics, we determined that activity is gated through the binding of the pantetheine arm and a phosphate group that hydrogen bonds to residue Lys154 that is predicted by an AlphaFold2 model to be located in a tunnel leading to the active site. To provide an economical solution for preparative-scale reactions, in situ transthioesterification was used with pantetheine and simple thioester substrate precursors, resulting in productive reactions. These findings outline a strategy for employing ACP- and CoA-dependent enzymes that are inaccessible through other means without the need for cost-prohibitive coenzyme A or carrier protein-activated substrates.
Keyphrases
  • fatty acid
  • amino acid
  • binding protein
  • gene expression
  • mass spectrometry
  • visible light