Login / Signup

Rapid Imaging of Unsaturated Lipids at an Isomeric Level Achieved by Controllable Oxidation.

Jian ZhangXinming HuoChengan GuoXiaoxiao MaHanxi HuangJiuming HeXiaohao WangFei Tang
Published in: Analytical chemistry (2021)
Lipid imaging plays an important role in the research of some diseases, such as cancers. Unsaturated lipids are often present as isomers that can have different functions; however, traditional tandem mass spectrometry imaging (MSI) cannot differentiate between different isomers, which presents difficulties for the pathological study of lipids. Herein, we propose a method for the MSI of the C═C double-bond isomers of unsaturated lipids based on oxidative reactions coupled with air flow-assisted desorption electrospray ionization, which can conveniently achieve rapid MSI of unsaturated lipids at an isomeric level. Using this method, tissue sections can be scanned directly with MSI after only 10 min of accelerated oxidation. This method was used for the imaging of mouse lung cancer tissues, revealing a distributional difference in the unsaturated lipid isomers of normal and pathological regions. Through the MSI of unsaturated lipids at an isomeric level in tissues infected with cancer cells, the regions where the isomers were enriched were exhibited, indicating that these regions were the most concentrated regions of cancer cells. This method provides a convenient platform for studying the functional effects of the isomers of unsaturated lipids in pathological tissues.
Keyphrases