Login / Signup

Formation of vesicles-in-a-vesicle with asymmetric lipid components using a pulsed-jet flow method.

Koki KamiyaToshihisa OsakiShoji Takeuchi
Published in: RSC advances (2019)
Lipid distribution in intracellular vesicles is different from that in the plasma membrane of eukaryotic cells. The lipid components in the intracellular vesicles are composed of phosphatidylserine and phosphatidylethanolamine in the outer leaflet and phosphatidylcholine and sphingomyelin in the inner leaflet. The lipid asymmetricities both in the intracellular vesicle membrane and the plasma membrane contribute to synaptic transmission functions. In this study, we developed a cell-sized asymmetric lipid vesicle system containing small-sized asymmetric lipid vesicles (of diameter 200-1000 nm) (asymmetric vesicles-in-a-vesicle), emulating lipid components in the plasma membrane and intracellular vesicle membrane of eukaryotic cells, using microfluidic technology. We successfully constructed an artificial exocytosis system using the asymmetric vesicles-in-a-vesicle system. This asymmetric vesicles-in-a-vesicle system will be helpful in understanding the mechanisms of vesicle transport, such as neurotransmission and exocytosis.
Keyphrases
  • fatty acid
  • induced apoptosis
  • solid state
  • aortic valve
  • signaling pathway
  • high throughput
  • oxidative stress
  • bone marrow
  • prefrontal cortex