Simultaneous Measurement of Thermal Conductivity and Volumetric Heat Capacity of Thermal Interface Materials Using Thermoreflectance.
Zeina AbdallahJames W PomeroyNicolas BlasakisAthanasios BaltopoulosMartin KuballPublished in: ACS applied electronic materials (2024)
Thermal interface materials are crucial to minimize the thermal resistance between a semiconductor device and a heat sink, especially for high-power electronic devices, which are susceptible to self-heating-induced failures. The effectiveness of these interface materials depends on their low thermal contact resistance coupled with high thermal conductivity. Various characterization techniques are used to determine the thermal properties of the thermal interface materials. However, their bulk or free-standing thermal properties are typically assessed rather than their thermal performance when applied as a thin layer in real application. In this study, we introduce a low-frequency range frequency domain thermoreflectance method that can measure the effective thermal conductivity and volumetric heat capacity of thermal interface materials simultaneously in situ, illustrated on silver-filled thermal interface material samples, offering a distinct advantage over traditional techniques such as ASTM D5470. Monte Carlo fitting is used to quantify the thermal conductivities and heat capacities and their uncertainties, which are compared to a more efficient least-squares method.