Login / Signup

Profiles and neuroprotective effects of Lycium ruthenicum polyphenols against oxidative stress-induced cytotoxicity in PC12 cells.

Hua GaoXiao YuanZhisheng WangQinghan GaoJianjun Yang
Published in: Journal of food biochemistry (2019)
Lycium ruthenicum Murr. (L. ruthenicum Murr.) is one of the perennial shrubs, which is commonly consumed as ethnic medicine and nutraceutical food. Herein, we detected eight polyphenols (including protocatechuic acid, catechin, p-coumaric acid, rutin, quercetin, syringic acid, caffeic acid, and ferulic acid) from Lycium ruthenicum. Furthermore, this study researched the potential neuroprotective mechanism of L. ruthenicum Murr. polyphenols (LRP) on PC12 cells under H2 O2 -induced oxidative stress. The results showed that pretreatment with LRP significantly mitigates H2 O2 -induced cytotoxicity in a dose-dependent manner for PC12 cells. LRP pretreatment also ameliorated the generation of intracellular reactive oxygen species and restored mitochondrial membrane potential as well as prevented the activation of caspase-3, caspase-8, and caspase-9 on PC12 cells under oxidative stress-induced apoptosis. This suggests that LRP will be a promising, safe candidate for delaying the onset and progress of neurodegenerative diseases associated with oxidative stress. PRACTICAL APPLICATIONS: Lycium ruthenicum Murr. belonging to the Solanaceae family, which is widespread throughout the Qinghai Tibet Plateau. It is one of the well-known perennial shrubs. Moreover, it is well known for containing a considerable amount of polyphenols. It has been reported that Lycium ruthenicum has anti-inflammatory, antihyperlipidemic, and antioxidative activities. Our results suggest that Lycium ruthenicum rich in polyphenols could contribute to delay in the onset and progress of neurodegenerative diseases associated with oxidative stress. Hence, LRP could be labeled as a neuroprotective food, ingredient or supplement in the formulation of food products for the population under oxidative stress induced related neurological changes.
Keyphrases