Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy.
Matteo CostacurtaJackson HePhilip E ThompsonJake ShorttPublished in: Journal of personalized medicine (2021)
Thalidomide analogues (or immunomodulatory imide drugs, IMiDs) are cornerstones in the treatment of multiple myeloma (MM). These drugs bind Cereblon (CRBN), a receptor for the Cullin-ring 4 ubiquitin-ligase (CRL4) complex, to modify its substrate specificity. IMiDs mediate CRBN-dependent engagement and proteasomal degradation of 'neosubstrates', Ikaros (IKZF1) and Aiolos (IKZF3), conveying concurrent antimyeloma activity and T-cell costimulation. There is now a greater understanding of physiological CRBN functions, including endogenous substrates and chaperone activity. CRISPR Cas9-based genome-wide screening has further elucidated the complex cellular machinery implicated in IMiD sensitivity, including IKZF1/3-independent mechanisms. New-generation IMiD derivatives with more potent anti-cancer properties-the CELMoDs (Cereblon E3 ligase modulators)-are now being evaluated. Rational drug design also allows 'hijacking' of CRL4CRBN utilising proteolysis targeting chimeras (PROTACs) to convey entirely distinct substrate repertoires. As all these chemotypes-thalidomide, IMiDs, CELMoDs and PROTACs-engage CRBN and modify its functions, we describe them here in aggregate as 'CRBN-interacting small molecules' (CISMs). In this review, we provide a contemporary summary of the biological consequences of CRBN modulation by CISMs. Detailed molecular insight into CRBN-CISM interactions now provides an opportunity to more effectively target previously elusive cancer dependencies, representing a new and powerful tool for the implementation of precision medicine.
Keyphrases
- multiple myeloma
- crispr cas
- acute lymphoblastic leukemia
- genome wide
- healthcare
- primary care
- dna methylation
- small molecule
- emergency department
- young adults
- stem cells
- social media
- papillary thyroid
- rectal cancer
- single molecule
- molecular dynamics simulations
- molecular docking
- replacement therapy
- squamous cell
- childhood cancer