Login / Signup

Understanding relations between rheology, tribology, and sensory perception of modified texture foods.

Madhu SharmaKartik S PondicherryLisa Duizer
Published in: Journal of texture studies (2021)
The aim of this work was to examine relations between instrumental and sensory parameters in a texture modified food matrix, with and without saliva. Nine pureed carrot samples (eight thickened and a control) were developed with starch (0.4 and 0.8% wt/wt), xanthan (0.2 and 0.4% wt/wt) or starch-xanthan blends that met International Dysphagia Diet Standardisation Initiative (IDDSI) Level 4 guidelines using fork and spoon tests. Rheological and tribological tests were conducted on the food and simulated bolus prepared by adding fresh stimulated saliva to the food (1:5, saliva:food) to mimic oral processing. Perceived sensory properties were identified using a temporal dominance of sensations (TDS) test (n = 16) where panelists were given a list of nine attributes. The area under the curve was extracted from TDS curves for each attribute/sample and this was correlated with rheological (viscosity at 10 s -1 , G', G″, and tan δ at 1 Hz) and tribological (friction coefficient in three regimes) data. The viscosity of the control sample decreased after adding hydrocolloids (except Starch_0.8%) and with saliva incorporation. G' and G″ either increased or were similar for xanthan and blends and decreased for starch-thickened samples. Hydrocolloid addition increased friction for all samples and was higher with saliva addition. Sensory results showed that samples with starch were perceived as thick and grainy while xanthan was perceived as smooth and slippery. A greater number of sensory attributes correlated with viscoelastic parameters compared to friction coefficients. Correlations were highest with the saliva added samples, further highlighting the importance of including saliva during instrumental testing.
Keyphrases