Functionalized Cellulose Networks for Efficient Oil Removal from Oil⁻Water Emulsions.
Uttam C PaulDespina FragouliIlker S BayerAthanassia AthanassiouPublished in: Polymers (2016)
The separation of oil from water in emulsions is a great environmental challenge, since oily wastewater is industrially produced. Here, we demonstrate a highly efficient method to separate oil from water in non-stabilized emulsions, using functionalized cellulose fiber networks. This is achieved by the modification of the wetting properties of the fibers, transforming them from oil- and water-absorbing to water-absorbing and oil-proof. In particular, two diverse layers of polymeric coatings, paraffin wax and poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) diblock copolymer, are applied on the surface of each individual fiber by a two-step dip adsorption process. The resulting cellulose networks exhibit superhydrophilicity and underwater superoleophobicity and they are mechanically reinforced. Therefore, the described treatment makes cellulose fiber networks excellent candidates for the filtration and subsequent removal of oil from oil-in-water non-stabilized emulsions with oil separation efficiency up to 99%. The good selectivity, reproducibility, and cost effectiveness of the preparation process leads to the production of low cost filters that can be used in oil⁻water separation applications.