Login / Signup

Cryopreservation of Cyanobacteria and Eukaryotic Microalgae Using Exopolysaccharide Extracted from a Glacier Bacterium.

Pervaiz AliDaniel FucichAamer Ali ShahFariha HasanFeng Chen
Published in: Microorganisms (2021)
Exopolysaccharide (EPS) has been known to be a good cryoprotective agent for bacteria, but it has not been tested for cyanobacteria and eukaryotic microalgae. In this study, we used EPS extracted from a glacier bacterium as a cryoprotective agent for the cryopreservation of three unicellular cyanobacteria and two eukaryotic microalgae. Different concentrations of EPS (10%, 15%, and 20%) were tested, and the highest concentration (20%) of EPS yielded the best growth recovery for the algal strains we tested. We also compared EPS with 5% dimethyl sulfoxide (DMSO) and 10% glycerol for the cryopreservation recovery. The growth recovery for the microalgal strains after nine months of cryopreservation was better than 5% DMSO, a well-known cryoprotectant for microalgae. A poor recovery was recorded for all the tested strains with 10% glycerol as a cryoprotective agent. The patterns of growth recovery for most of these strains were similar after 5 days, 15 days, and 9 months of cryopreservation. Unlike common cryopreservants such as DMSO or methanol, which are hazardous materials, EPS is safe to handle. We demonstrate that the EPS from a psychrotrophic bacterium helped in the long-term cryopreservation of cyanobacteria and microalgae, and it has the potential to be used as natural cryoprotective agent for other cells.
Keyphrases
  • escherichia coli
  • anaerobic digestion
  • induced apoptosis
  • cell death
  • risk assessment
  • cell proliferation
  • lactic acid