Metagenomic exploration of the rhizosphere soil microbial community and their significance in facilitating the development of wild-simulated ginseng.
Jiaquan HuangYaxin WuQiandi GaoXiaojie LiYunyan ZengYipeng GuoHeqian ZhangZhiwei QinPublished in: Applied and environmental microbiology (2024)
Panax ginseng, a prized medicinal herb, has faced increasingly challenging field production due to soil degradation and fungal diseases in Northeast China. Wild-simulated cultivation has prevailed because of its sustainable soil management and low disease incidence. Despite the recognized benefits of rhizosphere microorganisms in ginseng cultivation, their genomic and functional diversity remain largely unexplored. In this work, we utilized shotgun metagenomic analysis to reveal that Pseudomonadota, Actinomycetota, and Acidobacteriota were dominant in the ginseng rhizobiome and recovered 14 reliable metagenome-assembled genomes. Functional analysis indicated an enrichment of denitrification-associated genes, potentially contributing to the observed decline in soil fertility, while genes associated with aromatic carbon degradation may be linked to allelochemical degradation. Further analysis demonstrated enrichment of Actinomycetota in 9-year-old wild-simulated ginseng (WSG), suggesting the need for targeted isolation of Actinomycetota bacteria. Among these, at least three different actinomycete strains were found to play a crucial role in fungal disease resistance, with Streptomyces spp. WY144 standing out for its production of actinomycin natural products active against the pathogenic fungus Ilyonectria robusta . These findings not only enhance our understanding of the rhizobiome of WSG but also present promising avenues for combating detrimental fungal pathogens, underscoring the importance of ginseng in both medicinal and agricultural contexts.IMPORTANCEWild-simulated ginseng, growing naturally without human interference, is influenced by its soil microbiome. Using shotgun metagenomics, we analyzed the rhizospheric soil microbiome of 7- and 9-year-old wild-simulated ginseng. The study aimed to reveal its composition and functions, exploring the microbiome's key roles in ginseng growth. Enrichment analysis identified Streptomycetes in ginseng soil, with three strains inhibiting plant pathogenic fungi. Notably, one strain produced actinomycins, suppressing the ginseng pathogenic fungus Ilyonectria robusta . This research accelerates microbiome application in wild-simulated ginseng cultivation, offering insights into pathogen protection and supporting microbiome utilization in agriculture.
Keyphrases
- microbial community
- plant growth
- antibiotic resistance genes
- escherichia coli
- genome wide
- climate change
- risk factors
- gene expression
- wastewater treatment
- single cell
- risk assessment
- young adults
- dna methylation
- drug delivery
- copy number
- heavy metals
- transcription factor
- amino acid
- pluripotent stem cells
- induced pluripotent stem cells