Login / Signup

Glass bead system to study mycotoxin production of Aspergillus spp. on corn and rice starches.

Katalin InotaiIldikó Bata-VidácsÁkos TóthJudit KosztikMónika VargaAndrás SzekeresIstván NagyIstván NagyCsaba DobolyiMária MörtlAndrás SzékácsJózsef Kukolya
Published in: Applied microbiology and biotechnology (2024)
Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.
Keyphrases
  • lactic acid
  • escherichia coli
  • electron microscopy
  • risk assessment
  • cell wall
  • climate change