Portulacerebroside A (PCA), a cerebroside compound extracted from Portulaca oleracea L., has been shown to suppress hepatocellular carcinoma (HCC) cells. This study aims to investigate the effectiveness of trimethyl chitosan-cysteine (TMC-Cys) nanocarrier in delivering PCA for HCC management and to elucidate the molecular mechanisms behind PCA's function. TMC-Cys nanocarriers notably augmented PCA's function, diminishing the proliferation, migration, and invasiveness of HCC cells in vitro , reducing hepatocellular tumorigenesis in immunocompetent mice, and impeding metastasis of xenograft tumours in nude mice. Comprehensive bioinformatics analyses, incorporating Super-PRED systems alongside pathway enrichment analysis, pinpointed toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EGFR) as two promising targets of PCA, enriched in immune checkpoint pathway. PCA/nanocarrier (PCA) reduced levels of TLR4 and EGFR and their downstream proteins, including programmed cell death ligand 1, thereby increasing populations and activity of T cells co-cultured with HCC cells in vitro or in primary HCC tumours in mice. However, these effects were counteracted by additional artificial activation of TLR4 and EGFR. In conclusion, this study provides novel evidence of PCA's function in immunomodulation in addition to its direct tumour suppressive effect. TMC-Cys nanocarriers significantly enhance PCA efficacy, indicating promising application as a drug delivery system.
Keyphrases
- toll like receptor
- epidermal growth factor receptor
- drug delivery
- induced apoptosis
- tyrosine kinase
- small cell lung cancer
- inflammatory response
- cell cycle arrest
- immune response
- nuclear factor
- advanced non small cell lung cancer
- systematic review
- randomized controlled trial
- cancer therapy
- high fat diet induced
- type diabetes
- endoplasmic reticulum stress
- skeletal muscle
- cell proliferation
- virtual reality
- genetic diversity