Potential enzymes involved in beer monoterpenoids transformation: structures, functions and challenges.
Zhenghui JiangChen XuLimin WangKai HongChangwei MaChenyan LvPublished in: Critical reviews in food science and nutrition (2021)
Monoterpenes are important flavor and fragrance compounds in food. In beer, the monoterpenes mainly come from hops added during boiling process. Biotransformations of monoterpene which occurred during fermentation conferred beer with various kinds of aroma profiles, which can be mainly attributed to the contribution of enzymes in yeast. However, there are few reports on the identification and characterization of these enzymes in yeast. Illustrating the structure and functions of key enzymes related to transformations will broaden their potential applications in beer or other foodstuffs. Monoterpenoids including terpene hydrocarbons (limonene, myrcene, and pinene) and terpene alcohol (linalool, geraniol, nerol, and citronellol) gave the beer flower-like or fruit-like aroma. The biotransformation of monoterpenes and monoterpene alcohols in bacteria and yeast, and potential enzymes related to the transformation of them are reviewed here. Enzymes primarily are dehydrogenases including linalool dehydrogenase/isomerase, geraniol/geranial dehydrogenase, nerol dehydrogenase and citronellol dehydrogenase. Most of them are substrate-specific or substrate-specific after modifications by biotechnology methods, and part of them have been expressed in E. coli, while the purification and catalytic rate is very low. Efforts should be made to acquire abundant enzymes, and to fabricate enzyme-expressing yeast, which can be further applied in beer fermentation system.highlightsMonoterpenoids contributed to the flavor of food, especially beer.Transformation of monoterpenoids occurred during fermentation.Various kinds of enzymes are involved in the transformation of monoterpenoids in bacteria, yeast, etc.Crystal structures of these enzymes have been partially resolved.Few enzymes are further applied in food system to obtain abundant flavor.